Πανεπιστήμιο Πατρών

Προχωρημένα Θέματα σε Κατανεμημένα Συστήματα

Spark
What is Spark?

- Fast, expressive cluster computing system compatible with Apache Hadoop
 - Works with any Hadoop-supported storage system (HDFS, S3, Avro, ...)

- Improves **efficiency** through:
 - In-memory computing primitives
 - General computation graphs
 - **Up to 100× faster**

- Improves **usability** through:
 - Rich APIs in Java, Scala, Python
 - Interactive shell
 - **Often 2-10× less code**
How to Run It

- Local multicore: just a library in your program
- EC2: scripts for launching a Spark cluster
- Private cluster: Mesos, YARN, Standalone Mode
Languages

- APIs in Java, Scala, Python, R
- Interactive shells in Scala and Python
Introduction to Spark
Key Idea

- **Work with distributed collections as you would with local ones**

- **Concept: Resilient Distributed Datasets (RDDs)**
 - Immutable collections of objects spread across a cluster
 - Built through parallel transformations (map, filter, etc)
 - Automatically rebuilt on failure
 - Controllable persistence (e.g. caching in RAM)
Operations

- Transformations (e.g. map, filter, groupBy, join)
 - Lazy operations to build RDDs from other RDDs

- Actions (e.g., count, collect, save)
 - Return a result or write it to storage
Example: Mining Console Logs

- Load error messages from a log into memory, then interactively search for patterns

```python
lines = sc.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split('t')[2])
messages.cache()

messages.filter(lambda s: "foo" in s).count()
messages.filter(lambda s: "bar" in s).count()
...
```

Result: scaled to 1 TB data in 5-7 sec (vs 170 sec for on-disk data)
RDD Fault Tolerance

- RDDs track the transformations used to build them (their lineage) to recompute lost data

- E.g:

  ```python
  messages = textFile(...).filter(lambda s: s.contains("ERROR"))
  .map(lambda s: s.split('t')[2])
  ```

 ![Diagram](image)

 - HadoopRDD
 - path = hdfs://...
 - FilteredRDD
 - func = contains(…)
 - MappedRDD
 - func = split(…)

Fault Recovery Test

Time (s) vs. Iteration

Failure happens

- Iterations 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- Iteration times: 119, 57, 56, 58, 58, 81, 57, 59, 57, 59
Behavior with Less RAM

<table>
<thead>
<tr>
<th>% of working set in cache</th>
<th>Iteration time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache disabled</td>
<td>69</td>
</tr>
<tr>
<td>25%</td>
<td>58</td>
</tr>
<tr>
<td>50%</td>
<td>41</td>
</tr>
<tr>
<td>75%</td>
<td>30</td>
</tr>
<tr>
<td>Fully cached</td>
<td>12</td>
</tr>
</tbody>
</table>
Spark in Java and Scala

Java API:

JavaRDD<String> lines = spark.textFile(…);

errors = lines.filter(
 new Function<String, Boolean>() {
 public Boolean call(String s) {
 return s.contains("ERROR");
 }
 });

errors.count()

Scala API:

val lines = spark.textFile(…)

errors = lines.filter(s =>
 s.contains("ERROR")
 // can also write
 filter(_.contains("ERROR"))

errors.count
Which Language Should I Use?

- Standalone programs can be written in any, but console is only Python & Scala
- **Python developers**: can stay with Python for both
- **Java developers**: consider using Scala for console (to learn the API)

- Performance: Java / Scala will be faster (statically typed), but Python can do well for numerical work with NumPy
Spark Operations
Easiest way: Spark interpreter (spark-shell or pyspark)

- Special Scala and Python consoles for cluster use

Runs in local mode on 1 thread by default, but can control with MASTER environment var:

```
MASTER=local ./spark-shell       # local, 1 thread
MASTER=local[2] ./spark-shell   # local, 2 threads
MASTER=spark://host:port ./spark-shell # Spark standalone cluster
```
First Stop: SparkContext

- Main entry point to Spark functionality
- Created for you in Spark shells as variable sc
- In standalone programs, you’d make your own (see later for details)
Creating RDDs

Turn a local collection into an RDD
sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile("file.txt")
sc.textFile("directory/*.txt")
sc.textFile("hdfs://namenode:9000/path/file")

Use any existing Hadoop InputFormat
sc.hadoopFile(keyClass, valClass, inputFmt, conf)
Basic Transformations

```
nums = sc.parallelize([1, 2, 3])
#
# Pass each element through a function
squares = nums.map(lambda x: x**2)  # => {1, 4, 9}
#
# Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0)  # => {4}
#
# Map each element to zero or more others
nums.flatMap(lambda x: range(0, x))  # => {0, 0, 1, 0, 1, 2}
```
Basic Actions

```python
nums = sc.parallelize([1, 2, 3])

# Retrieve RDD contents as a local collection
nums.collect()  # => [1, 2, 3]

# Return first K elements
nums.take(2)  # => [1, 2]

# Count number of elements
nums.count()  # => 3

# Merge elements with an associative function
nums.reduce(lambda x, y: x + y)  # => 6

# Write elements to a text file
nums.saveAsTextFile("hdfs://file.txt")
```
Working with Key-Value Pairs

- Spark’s “distributed reduce” transformations act on RDDs of *key-value pairs*

- **Python:**
  ```
  pair = (a, b)
  pair[0] # => a
  pair[1] # => b
  ```

- **Scala:**
  ```
  val pair = (a, b)
  pair._1 // => a
  pair._2 // => b
  ```

- **Java:**
  ```
  Tuple2 pair = new Tuple2(a, b); // class scala.Tuple2
  pair._1 // => a
  pair._2 // => b
  ```
Some Key-Value Operations

```python
pets = sc.parallelize([("cat", 1), ("dog", 1), ("cat", 2)])

pets.reduceByKey(lambda x, y: x + y)
# => {(cat, 3), (dog, 1)}

pets.groupByKey()
# => {(cat, Seq(1, 2)), (dog, Seq(1))}

pets.sortByKey()
# => {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey also automatically implements combiners on the map side
```
Example: Word Count

```python
lines = sc.textFile("hamlet.txt")
counts = lines.flatMap(lambda line: line.split(" ")) \
    .map(lambda word: (word, 1)) \
    .reduceByKey(lambda x, y: x + y)
```

```
"to be or"  "to"  "be"  "or"
  ↓     ↓     ↓     ↓

"not to be"  "not"  "to"  "be"
  ↓     ↓     ↓     ↓
```

```
(to, 1) (be, 1) (or, 1)
  ↓     ↓     ↓

(be, 2) (not, 1)
```

```
(not, 1) (to, 1) (be, 1)
  ↓     ↓     ↓

(or, 1) (to, 2)
```

Example: Word Count
Multiple Datasets

visits = sc.parallelize([("index.html", "1.2.3.4"),
 ("about.html", "3.4.5.6"),
 ("index.html", "1.3.3.1")])

pageNames = sc.parallelize([("index.html", "Home"), ("about.html", "About")])

visits.join(pageNames)
("index.html", ("1.2.3.4", "Home"))
("index.html", ("1.3.3.1", "Home"))
("about.html", ("3.4.5.6", "About"))

visits.cogroup(pageNames)
("index.html", (Seq("1.2.3.4", "1.3.3.1"), Seq("Home")))
("about.html", (Seq("3.4.5.6"), Seq("About")))
Controlling the Level of Parallelism

- All the pair RDD operations take an optional second parameter for number of tasks

 words.reduceByKey(lambda x, y: x + y, 5)
 words.groupByKey(5)
 visits.join(pageViews, 5)
Using Local Variables

- External variables you use in a closure will automatically be shipped to the cluster:
  ```python
  query = raw_input("Enter a query:")
  pages.filter(lambda x: x.startswith(query)).count()
  ```

- Some caveats:
 - Each task gets a new copy (updates aren’t sent back)
 - Variable must be Serializable (Java/Scala) or Pickle-able (Python)
 - Don’t use fields of an outer object (ships all of it!)
Closure Mishap Example

class MyCoolRddApp {
 val param = 3.14
 val log = new Log(...)
 ...

 def work(rdd: RDD[Int]) {
 rdd.map(x => x + param)
 .reduce(...)
 }
}

How to get around it:

class MyCoolRddApp {
 ...

 def work(rdd: RDD[Int]) {
 val param_ = param
 rdd.map(x => x + param_)
 .reduce(...)
 }
}

NotSerializableException: MyCoolRddApp (or Log)

References only local variable instead of this.param
More Details

- Spark supports lots of other operations!

- Full programming guide: spark-project.org/documentation
Job Execution
Software Components

- Spark runs as a library in your program (one instance per app)

- Runs tasks **locally** or on a **cluster**
 - Standalone deploy cluster, Mesos or YARN

- Accesses storage via Hadoop InputFormat API
 - Can use HBase, HDFS, S3, ...

![Diagram of Spark components](image)
Task Scheduler

- Supports general task graphs
- Pipelines functions where possible
- Cache-aware data reuse & locality
- Partitioning-aware to avoid shuffles

Diagram:
- Stage 1: groupBy
- Stage 2: map, filter
- Stage 3: join

Symbols:
- RDD
- cached partition
Cluster manager

- Cluster manager grants executors to a Spark application
Driver program

- Driver program decides when to launch tasks on which executor

Needs full network connectivity to workers
Hadoop Compatibility

- Spark can read/write to any storage system / format that has a plugin for Hadoop!
 - Examples: HDFS, S3, HBase, Cassandra, Avro, SequenceFile
 - Reuses Hadoop’s InputFormat and OutputFormat APIs

- APIs like SparkContext.textFile support filesystems, while SparkContext.hadoopRDD allows passing any Hadoop JobConf to configure an input source
Standalone Programs
Build Spark

- Requires Java 6+, Scala 2.9.2

 git clone git://github.com/mesos/spark
cd spark
sbt/sbt package

 # Optional: publish to local Maven cache
sbt/sbt publish-local
Add Spark to Your Project

- Scala and Java: add a Maven dependency on
 - groupId: org.spark-project
 - artifactId: spark-core_2.9.1
 - version: 0.7.0-SNAPSHOT

- Python: run program with our pyspark script
Create a SparkContext

Scala

```scala
import spark.SparkContext
import spark.SparkContext._

val sc = new SparkContext(“masterUrl”, “name”, “sparkHome”, Seq(“app.jar”))
```

Java

```java
import spark.api.java.JavaSparkContext

JavaSparkContext sc = new JavaSparkContext(“masterUrl”, “name”, “sparkHome”, new String[ ] {“app.jar”});
```

Python

```python
from pyspark import SparkContext

sc = SparkContext(“masterUrl”, “name”, “sparkHome”, [“library.py”])
```
import spark.SparkContext
import spark.SparkContext._

object WordCount {
 def main(args: Array[String]) {
 val sc = new SparkContext("local", "WordCount", args(0),
 Seq(args(1)))
 val lines = sc.textFile(args(2))
 lines.flatMap(_.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
 .saveAsTextFile(args(3))
 }
}
import sys
from pyspark import SparkContext

if __name__ == "__main__":
 sc = SparkContext("local", "WordCount", sys.argv[0], None)
 lines = sc.textFile(sys.argv[1])

 lines.flatMap(lambda s: s.split(" "))
 .map(lambda word: (word, 1))
 .reduceByKey(lambda x, y: x + y)
 .saveAsTextFile(sys.argv[2])
Example: PageRank
Why PageRank?

- Good example of a more complex algorithm
 - Multiple stages of map & reduce

- Benefits from Spark’s in-memory caching
 - Multiple iterations over the same data
Basic Idea

- Give pages ranks (scores) based on links to them
 - Links from many pages \Rightarrow high rank
 - Link from a high-rank page \Rightarrow high rank
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{conibs}$
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page \(p \) contribute \(\frac{\text{rank}_p}{|\text{neighbors}_p|} \) to its neighbors
3. Set each page’s rank to \(0.15 + 0.85 \times \text{contribs} \)
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$

Final state:
Scala Implementation

```scala
val links = // RDD of (url, neighbors) pairs
val ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
  val contribs = links.join(ranks).flatMap {
    case (url, (neighbors, rank)) =>
      neighbors.map(x => (x, rank / neighbors.size))
  }
  ranks = contribs.reduceByKey(_ + _)
    .mapValues(0.15 + 0.85 * _)
}

ranks.saveAsTextFile(...)
```
Python Implementation

```
links = # RDD of (url, neighbors) pairs
ranks = # RDD of (url, rank) pairs

for i in range(NUM_ITERATIONS):
    def compute_contribs(pair):
        [url, [links, rank]] = pair  # split key-value pair
        return [(dest, rank/len(links)) for dest in links]

    contribs = links.join(ranks).flatMap(compute_contribs)
    ranks = contribs.reduceByKey(lambda x, y: x + y) \
           .mapValues(lambda x: 0.15 + 0.85 * x)

ranks.saveAsTextFile(...)
```
PageRank Performance

- Iteration time (s)
- Number of machines

Hadoop
Spark
Other Iterative Algorithms

K-Means Clustering

- Hadoop: 155
- Spark: 4.1

Logistic Regression

- Hadoop: 110
- Spark: 0.96

Time per Iteration (s)
Deployment Options
Local Mode

- Just pass local or local[k] as master URL
- Still serializes tasks to catch marshaling errors
- Debug using local debuggers
 - For Java and Scala, just run your main program in a debugger
 - For Python, use an attachable debugger (e.g. PyDev, winpdb)
- Great for unit testing
Private Cluster

- Can run with one of:
 - Standalone deploy mode (similar to Hadoop cluster scripts)
 - Apache Mesos: spark-project.org/docs/latest/running-on-mesos.html
 - Hadoop YARN: spark-project.org/docs/0.6.0/running-on-yarn.html

- Basically requires configuring a list of workers, running launch scripts, and passing a special cluster URL to SparkContext
Amazon EC2

- Easiest way to launch a Spark cluster

 `git clone git://github.com/mesos/spark.git`

 `cd spark/ec2`

 `./spark-ec2 -k keypair -i id_rsa.pem -s slaves \`

 `[launch|stop|start|destroy] clusterName`

- Details: spark-project.org/docs/latest/ec2-scripts.html
Viewing Logs

- Click through the web UI at master:8080

- Or, look at stdout and stderr files in the Spark or Mesos “work” directory for your app:

 work/<ApplicationID>/<ExecutorID>/stdout

- Application ID (Framework ID in Mesos) is printed when Spark connects
Conclusion

- Spark offers a rich API to make data analytics fast
 - both fast to write and fast to run

- Achieves 100x speedups in real applications

- Growing community with 14 companies contributing

- Details, tutorials, videos: www.spark-project.org